60 research outputs found

    A search for SO2, H2S and SO above Tharsis and Syrtis volcanic districts on Mars using ground-based high-resolution submillimeter spectroscopy

    Get PDF
    AbstractWe surveyed the Tharsis and Syrtis volcanic regions on Mars during 23 November 2011 to 13 May 2012 which corresponded to its mid Northern Spring and early Northern Summer seasons (Ls=34–110°). Strong submillimeter rotational transitions of sulfur dioxide (SO2), sulfur monoxide (SO) and hydrogen sulfide (H2S) were targeted. No active release was detected, and we infer 2σ upper limits across the disk of the planet of 1.1ppb, 0.7ppb and 1.3ppb for SO2, SO and H2S, respectively. Our derived upper limit for SO2 is comparable to previously reported limits, whereas for H2S we set a more stringent upper limit than previously measured, and we establish a limit for SO. Among the targeted molecules, SO2 is the strongest indicator for volcanic outgassing. Assuming a photochemical lifetime of 2years for SO2, our upper limit of 1.1ppb implies an outgassing rate less than 55 metric tons/day. This rate limits the daily amount of degassing magma to less than 12,000m3. Our sensitivity is sufficient to detect a volcanic release on Mars that is 4% the SO2 released continuously from Kilauea volcano in Hawaii or 5% that of the Masaya volcano in Nicaragua. The non-detection of the sulfur compounds in the atmosphere of Mars indicates the absence of major volcanic outgassing

    Strong variability of Martian water ice clouds during dust storms revealed from ExoMars Trace Gas Orbiter/NOMAD

    Get PDF
    Observations of water ice clouds and aerosols on Mars can provide important insights into the complexity of the water cycle. Recent observations have indicated an important link between dust activity and the water cycle, as intense dust activity can significantly raise the hygropause, and subsequently increase the escape of water after dissociation in the upper atmosphere. Here present observations from NOMAD/TGO that investigate the variation of water ice clouds in the perihelion season of Mars Year 34 (April 2018‐19), their diurnal and seasonal behavior, and the vertical structure and microphysical properties of water ice and dust. These observations reveal the recurrent presence of a layer of mesospheric water ice clouds subsequent to the 2018 Global Dust Storm. We show that this layer rose from 45 to 80 km in altitude on a timescale of days from heating in the lower atmosphere due to the storm. In addition, we demonstrate that there is a strong dawn dusk asymmetry in water ice abundance, related to nighttime nucleation and subsequent daytime sublimation. Water ice particle sizes are retrieved consistently and exhibit sharp vertical gradients (from 0.1 to 4.0 ÎŒm), as well as mesospheric differences between the Global Dust Storm (<0.5 ÎŒm) and the 2019 regional dust storm (1.0 ÎŒm), which suggests differing water ice nucleation efficiencies. These results form the basis to advance our understanding of mesospheric water ice clouds on Mars, and further constrain the interactions between water ice and dust in the middle atmosphere

    The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter

    Get PDF
    The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 ÎŒm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 ÎŒm spectral range with a resolving power of ∌20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 ÎŒm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 ÎŒm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∌60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described

    The composition of the protosolar disk and the formation conditions for comets

    Get PDF
    Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today. This paper summarizes some recent contributions to our understanding of both cometary volatiles and the composition, structure and evolution of protostellar disks.Comment: To appear in Space Science Reviews. The final publication is available at Springer via http://dx.doi.org/10.1007/s11214-015-0167-

    On the origin and evolution of the material in 67P/Churyumov-Gerasimenko

    Get PDF
    International audiencePrimitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects

    Methane Clumped Isotopes: Progress and Potential for a New Isotopic Tracer

    Get PDF
    The isotopic composition of methane is of longstanding geochemical interest, with important implications for understanding petroleum systems, atmospheric greenhouse gas concentrations, the global carbon cycle, and life in extreme environments. Recent analytical developments focusing on multiply substituted isotopologues (‘clumped isotopes’) are opening a valuable new window into methane geochemistry. When methane forms in internal isotopic equilibrium, clumped isotopes can provide a direct record of formation temperature, making this property particularly valuable for identifying different methane origins. However, it has also become clear that in certain settings methane clumped isotope measurements record kinetic rather than equilibrium isotope effects. Here we present a substantially expanded dataset of methane clumped isotope analyses, and provide a synthesis of the current interpretive framework for this parameter. In general, clumped isotope measurements indicate plausible formation temperatures for abiotic, thermogenic, and microbial methane in many geological environments, which is encouraging for the further development of this measurement as a geothermometer, and as a tracer for the source of natural gas reservoirs and emissions. We also highlight, however, instances where clumped isotope derived temperatures are higher than expected, and discuss possible factors that could distort equilibrium formation temperature signals. In microbial methane from freshwater ecosystems, in particular, clumped isotope values appear to be controlled by kinetic effects, and may ultimately be useful to study methanogen metabolism

    Charge Transfer Reactions

    Full text link
    • 

    corecore